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From the complete Boltzmann's equation we obtain general hydrodynamic equations for the laminar sta-
tionary Poiseuille flow driven by an acceleration of gravify This theoretical framework implies highly
nonlinear transport equations. The hydrodynamic equations are perturbatively solved up to sixth order using a
small adimensional paramet& proportional tog. The predictions are compared with our own simulational
results obtaining very good agreement. A second and small adimensional parameter that naturally enters the
formalism is a Knudsen number Kn proportional to the ratio between the mean free path and the width of the
Poiseuille channel and it serves to understand the role of the finite size effects. It will be seen in particular that
there is a heat flux with a normal componegtand a heat fluxj, parallel to the isotherms and that their ratio
is inversely proportional to the Reynolds numbey’q,~ 7/Kn~ 1/Re.[S1063-651X98)08707-§

PACS numbgs): 05.20.Dd, 47.50+d, 51.10+y

[. INTRODUCTION tum, and energy, extra balance equations that take the place
of the usual constitutive equations. These extra equations are
This paper presents a Poiseuille flow that shows a behaderived from Boltzmann’s equation using a moment expan-
ior beyond the scope of standard hydrodynamics. Theion of the distribution. The whole picture is valid in the
Poiseuille flow is a classical example to study by means oBoltzmann-Grad limit of low density and small, but finite,
the Navier-Stokes equation$1—3]. Perhaps the first mean free path. We call such dynamiBsltzmann-Grad
molecular-dynamic simulation of this flow is the one re- gas-dynamicssince Grad pioneered moment expansions in
ported in[4]. Usually the Poiseuille flow is understood to be the present contexg]. Besides Grad’s already cited articles,
driven by an externally imposed pressure gradient, but it isve have made presentations and applications of Boltzmann-
trivially equivalent to applying a gravitational force mg over Grad gas-dynamics ir10—12. It has to be underlined that in
each particlg5,6]. For small velocitiegsmall Reynolds or the present framework no constitutive transport equations are
Mach numbeyr the flow is known to be laminar and station- assumed. Instead, the derived gas-dynamics contains equa-
ary and the velocity profile is parabolic. There is, however, dions and they replace Newton's and Fourier’s laws.
critical Reynolds number above which an unstafilebu- In [2] it has been shown that for a two-dimensional in-
lent) regime startd2]. In [7] the authors studied a small compressible Poiseuille flow in an infinitely long channel the
system of Lennard-Jones particles observing that in spite giredicted critical Reynolds number is Reb5772 corre-
the size of the system it has a good hydrodynamic behaviosponding to long wave excitatioh§]. But when the aspect
In this paper we present analytic and simulational resultsatio A =width/length is finite, the value of Reincreases
regarding the Poiseuille flow of a two-dimensional system ofsince these long wave excitations cannot exist[@h the
hard particles in a regime deeply inside the stable zone. Thauthors have studied the stability curkeversus Rg that
corresponding theoretical results in the 3D case are presentstems from a linear stability analysis. In particular from their
in the final section. An interesting feature of our system ofresults it is seen that for aspect ratie=1 or A\ =4—which
hard particles is that it presents important thermal and comwe use—Rg=1C°. In view of this we can state that the
pressibility effects. Hence this numerical system represents mumerical experiments that we present in the present paper
challenge to the theory of hydrodynamics since its transporare deeply in the stable region (R&00).
coefficients depend on position. A relatively recent and quite  One could say that the results in this work should be
thorough numerical analysis of the 2D Poiseuille flow isexpected because we know that Boltzmann’s equation has to
found in[8]. describe correctly a system such as the one we deal with. The
It will be shown that our simulational observations fall point is, however, that it is not obvious how to extract the
beyond standard hydrodynamics: the transport laws are nofrformation from Boltzmann’s equation. Many applications
linear and effects related to the small ratio of the mean freef Boltzmann’s equations use the Chapman-Enskog method
path and the width of the channel are observable. We presetd extract the information concealed in this very complex
a hydrodynamics derived directly from Boltzmann’s equa-kinetic equation[13] or, if not, they use the approximate
tion, which includes, besides the balance of mass, momerBhatnagar-Gross-KrookBKG) equation; in the context of
the Poiseuille flow se¢5,14—18. Up to second order the
Chapman-Enskog method is quite involved and leads to lin-
*Electronic address: drisso@enskog.dfi.uchile.cl ear constitutive equations, therefore it cannot describe what
Electronic address: pcordero@cec.uchile.cl we do here.
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As already said, we use Grad’s moment expansion ak(y)
method[9], which has already been proved to produce quite a (&)= ,
nontrivial nonlinear constitutive equations that describe ex-
traordinarily well the observations obtained from molecular-yhere
dynamic simulation§10—12. We particularly underline that
in [10] we were able to find a close analytic solution of the N, T, 1 To 2paTS?
gas-dynamic equations for the case of a planar Couette flow, Po= L and Qo= Epo mo > (2
and they describe extremely well the simulational observa- mmo
tions. Interesting fits to some of the results given[i0]
using a modified Boltzmann equation are giver 1.

y

The temperature field is expressed in energy units such
éhat Boltzmann’s constant lss=1. The particles have mass

In Sec. Il we present the gas-dynamic equations for th ) e 5 .
bidimensional laminar Poiseuille flow, the boundary and in-T" @nd diametew; pp=(7o*/4)(N,/L,) is the global area
density andN, is the number of particles per unit length. It is

tegral conditions, and a low-order nontrivial perturbative so- . : . . ;
lution. In Sec. lll after explaining the molecular-dynamic convenient to define an adimensional fieidhat measures
gle intensity of the shear rate

simulations that were made, a comparison between th
theory of Sec. Il and the simulational results is made. Section
) . 1 mTdu,
IV presents the gas-dynamic equations and a low-order so- y=—\/— ,
lution of the 3D case. The Appendix contains the perturba- 20p V m dy
tive solution up to sixth order for the bidimensional case.

()

wherep is the hydrostatic local pressure.
When the equations are written in terms of these quanti-
ties some parameters emerge naturally. They are
In this section we present the hydrodynamic equations for
a laminar 2D Poiseuille flow along a channel with walls 2 I mgl, 1
parallel to theX axis placed ay= *+L,/2. The fluid moves Kn= JmoN *- and F= T, Kn' )
X

L oA y
under the effect of a gravitational acceleratps gx, it has
N, particles per unit length along the channel and the wallsThe parametef serves to control the intensity of the veloc-

Il. POISEUILLE LAMINAR FLOW GAS-DYNAMICS

are kept at a fixed temperatufg. ity field. Kn is proportional to the ratio between the mean
_ _ free pathl = 7a/(8\2p,) and the transversal linear size of
A. Gas-dynamic equations the box, hence it is a Knudsen number and it serves as a

From Boltzmann’s equation it is straightforward to derive 900d descriptor of finite size effects. The complete picture is
balance equations for mass, momentum, and energy. THeorked out under the assumption that Kn is small, otherwise
balance equations stemming from higher moments of the digv€ would be dealing with a Knudsen gas.
tribution function are not so simple to derive since they are The mass balance equation is satisfied identically. The
not associated to microscopically conserved quantities. Thef@st of the balance equations are the following. The momen-
are obtained using some truncation assumptions, as Grad di¢m balance yields
In this way balance equations associated to the pressure ten-

* _
sor, P;;, and the heat flux vectony, follow and they are Pyy=const, ®)
dynamical equationghat totally replace the usually linear
d static constitutive transport equations. We have recon- zy p*
an ' Kn = FKn?—. (6)

structed Grad’s derivation of these higher balance equations dé¢ T*
for the case of a dilute 2D gas of hard disks and they are

found in[10,11. Once the whole set of balance equations isThe energy balance becomes
specialized to the Poiseuille flow, the problem is reduced to a

set of five coupled nonlinear differential equations, some al- Kn \/T_* dq;‘ .
gebraic equations, a boundary condition, some symmetry 8 p* d_gz_Vny' @

properties, and an integral condition. We remark that Grad’s
solution cannot be expected to be valid near the boundariefne equations associated to the balance offthegive
where the interaction with the walls plays an important dis-
torting role particularly at low densities because the formal-

ism does not take into consideration wall effects. p* = P;y_ E‘yP:ya (8
Before we write down the basic hydrodynamic equations
for the laminar Poiseuille flow, we define adimensional fields Kn VT* dgt
that, instead of being functions of the transversal coordinate — X yp;y_ p;y_ 9
y, are defined as functions gEy/L,, 16 p* d¢
T (&)= T(y) And finally theq, balance equations are
ST
KnyT* __ dT* FKn?
Pi;(y) —3——Py dé =0 +3yay+ — ‘/T_*P;y'
Py (&)= —-—, (1) P P
Po (10
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KnyT* 1 1
p* (Zpyy dé: 2 dg{yp* T*} P:y( ii) = iEJEKn, (15)
. . FK2T* . since Piy(g) i§ _antisymmetric ing, but this is not an inde-
=0qy tyax t —— Py (1)  pendent condition.
p

. . . C. Perturbative solution
Equationg6), (7), (9), (10), and(11) are five coupled differ-

ential equations for the five fieldé*y, q;‘ . q*, T*, andy. : The tacfcelera}tli)on of gi:avity its thletsger;t t[]at takesttrrl]e Sys-
To completely solve the hydrodynamic problem it is neces{€M out of equilibrium. Itis natural then to takg or rather
sary to find also the uniform fielB3, . The hydrostatic pres- F, as the small parameter to iteratively find a solution. As-
sure is determined from Eg) and P* 2p* — P}, . suming analyticity atF=0 the set of differential equations

In these equations the derlvatlves appear muItlplled by K and the boundary condition can easily be solved consistently

suggesting that it would be more natural to use as adimen?
sional transversal coordinate the quangts £/Kn, but then

order by order.
At the tr|V|aI order F=0 all fields vanish except* =1

*
the integral condition described below introduces Kn sepa (ij heck that th d ord lution i
rately since Eq(14) would be [ p*/T*d¢ = 1/Kn. tis easy to check that the second order solution is
Equations(9) and(11) are rather complex equations that P},=EKNF, y=—¢KnF,

take the place of the usual laws of viscous flow and of trans-

versal heat transport, respectively. In our case they have been Kn?2
derived rather than introduced as assumptions. Pyy=1+ e 2
B. Boundary and integral conditions (16)
4 2
The temperature is fixed at the walls so that . & (38 3\ Ll
) T*(¢)= 1+48 3+4 16Kn]—‘,
T - =1. (12
2 2 8 32
qx = —FKn?, q§=§§ FeKn,
From the differential equations and the boundary condi-
tion (12) it follows that the hydrodynamic fields of the from where it follows that
present problem have two parities, one with respect to 3 L
phanglng the sign of]f_and the .othe.r one Wlth_ respect to p* =14 | —+| 2 &2— = |kn?| 2. 17
inverting £. These parities are given in expressids), 60 2 4
Fo—TF E—¢ The pressure is not uniform but its nonuniformity is quite
small since it is proportional to KF2. The temperature
b - - profile is not parabolic and its nonuniformity is dominated by
T* + + a & term. At this order one can already see a quadratic
qr — + correction to the* profile, which is there because the Knud-
q* n _ sen number Kn is finite. This correction corresponds to the
P{* B _ one in Eq.(21) of [18]. See alsd19] and[12].
Piy N 4 Newton’s law of viscous flow in the present adimensional

formulation is P§y= —p* ¥ and up to second order it is sat-
(13 isfied but at higher orders it is known that this is not the case

as seen, for example, [A2]. Fourier’'s law in adimensional
The explicit use of these parities plus the boundary conditioiorm is gy = —2Kn(dT*/d¢), which is not quite true at the
mentioned above is enough to determine a unique solution giresent order The small difference, to this order, is ¥Kn
the differential equations except thﬁt}y is not yet deter- One should perhaps be surprised that there is a heatiflux
mined. parallel to the isotherms; it is small but it is there. This non-

To obtainP}, it is necessary to use the ideal gas equatiorstandard flux(parallel to the isothermshas already been

of state derived in the Boltzmann-Grad ||mn: nT’ where mentioned in the literature and derived from Boltzmann's

n(y) is the number density. Singgn(y)dy integrated over €duation, as, for example, [10,12,14,1%

the width of the channel gives the density per unit length, ntegrating the expression for and using definitior(3),
N,, then yields the usual parabolic velocity profile

. s M oL
Jmp (§)d§:l_ (14) vx=\/_|_\ovx—2f(4 52). (18)

-12T* (&)

Hence the hydrodynamic velocity at the center of the channel
From Eq.(6) it is seen thaP y(§) has to satisfy at low order, from Eq(18), is proportional taF,
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.7: 0.018 T T T T T
5 (19

* —
Ucenter—
0.016 4

as it has already been mentioned. e e
In Appendix A we give the solution of our system up to b
sixth order inF while in the next section we show how well o K
our solution fits with our observations. It can be checked that \%"”"vm\ M/
the fourth order is enough to explain the fits presented in the ooz ]

next section. In fact, the sixth-order corrections are negli-
gible in the cases we have considered.
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[ll. SIMULATIONAL CONDITIONS

AND SIMULATION-THEORY COMPARISON FIG. 1. Density and pressure profile for the=7056 system.

The circles give the simulational resul¢see text and the solid
A. Generalities lines correspond to the theoretical predictions up to sixth order. The
solid and open circles represent the pressure and density, respec-

Our main simulations consider a systemNof 7056 par- tively

ticles in a channel of length,=372.22r and width L,

=1488.8@r. We have also made simulations with a larger o ) )
system of N=28224 particles, in a channel with,=L, In the caseN=7056, the statistics was improved making

=1488.9r. This implies, in both cases, that the global area2l independent runs using equivalent macroscopic initial

density isp,=0.01. With this choice the nonideal correc- conditions, which differed only microscopically. The results

tions to the equation of state are less than 2%. The size of théiscussed below correspond to the ensemble of these simu-

system is large enough that the ratio betweenntigan free lations.

path | =mo/(8+2p,), and the widthL, of the channel is Taking advantage of the translation invariance in ¥e

about 0.019. direction, it was natural to take horizontal averages of the
Units are chosen so that the mass of each particle is observed cell results getting in this way smooth vertical pro-

=1, their diameter igr=1, and time units are such that the files for the observed hydrodynamic fields.

externally imposed temperatufg expressed in energy units

(kg=1) is fixed to beT,=1. The collisions among particles B. Theory versus simulations

are perfectly elastic. The vertical wallalong theY direc- M . how bound ff H
tion) are treated as periodic boundaries, and the collisiong VOSt quantities show boundary effects. The temperature

with the hard horizontal wall§along theX direction are field shows isotherms parallel to the flow but—as predicted
such that they impos&,=1.0 at the walls as well as a null Py EGs:(10) and (11)—the heat flux is not orthogonal to
velocity. In both casesN= 28224 andN=7056) the exter- th.em. The heat flux parallel to the pr@and to the |sqthern)s
nal acceleration has been choseg0.124(To/mL,) will be discussed further along and it can be seen in Fig. 5. In

=0.000 083, which corresponds #~2.07. a wide central part it points against the flow while nearer to
For finite systems there is a wall temperature jump thathe walls its sign changes as predicted. .
cannot be neglected, implying that the lirfiity — wall) does The equation of state is well satisfied across the fluid,

not give exactly the value externally imposed. As it will be including the regions near the walls. Observed discrepancies
seen below, the effective values fog are T,=1.10 in the  with the ideal gas equation were always below 2% and if
caseN=28 224 andTl,= 1.58 forN= 7056, implying effec- Henderson’s equation of staft20] is used the discrepancies
tive valuesF=1.89 andF=1.31, respectively. The value of are below 0.1%.
the Reynolds number in our simulations is~R&7 for N P,y should be uniform, see E¢5), and this is what we in
=7056 and Re-42 for N=28 224. fact observe. From the horizontal average of the observed
In every simulation the system was relaxed for aboutp,,, the value at eacl is obtained with errors of less than
three thermal diffusion timedg;, before local time aver- 0.4%. An additional vertical average over the previous pro-
ages of the main moments of the distributiond{,T,p;;,q) file produces a variance of about ®%. In this sense it can
were taken. The temporal averages were taken for as long && stated thaP,, is independent of as our equations pre-
30 tyi in the case ofN=7056, and 46.5t,; in the case of dict.
N=28 224. In onetyy each particle suffers about 500 par- As a consequence of finite size the temperature has a dis-
ticle collisions wherN= 7056 and about 1000 particle colli- continuity at the walls. We use this fact to considgras a
sions whernN=28 224, parameterto be determined. With this aim we equate the
To measure the hydrodynamic behavior of the system, theneasured,,, with the theoreticaP,,= pOP;‘y, written up to
box is divided inM, XM, rectangular cells. Time averages sixth order, to obtain an effectivé,. In this way we deter-
of the first moments of the distribution are made in each cellmine an effective valueT,=1.10 for theN=7056 system,
For the system withN=28 224 particles the choice was and T,=1.58 for N=28 224. The other theoretical profiles
M,=M,=28, which corresponds to about 36 disks per cell,obtained using these values fd are then directly com-
while in the case withN=7056 the choice wad1,=21, pared with the simulational results finding that usually they
M, =84, or about 4.0 disks per cell. almost coincide. Details follow.
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FIG. 2. Temperature profil&/T, for the N=7056 system. The FIG. 4. Thev, velocity profile, scaled with the factoyT,/m,
circles give the simulational results and the solid line corresponds téor the N=28 224 system. The circles give the simulational results,
the theoretical prediction up to sixth order. The discrepancy in thehe dotted line gives the first-order correction. The velocity profile
central region is of about 1.7%. up to third and fifth order are indistinguishable and correspond to

the solid line.

1. Thermodynamic fields

The pressure that we predict is in excellent agreemerwe observation&he discrepancy in this case being about 2%
with what we observésolid circles in Fig. 1, the discrepan- €XCept very near the boundary region

cies being less than 0.5%. Only in a narrow region near the Plotting the observed values &, and —py produces
walls are there deviations that reach 6%. coincident points, namely, the deviations from Newton’s law

The density profilopen circles in Fig. Lshows impor- ~ €annot be observed. The reason can be understood because

tant boundary effects. Near the walls theory underestimateBxy and —py at first order coincidethey are O(Knf)]
the density by about 7%. Since the global density is fixedWhile Pxy+py is O(Kn®F?). The difference between these
this implies that the mean density in the central region isWo0 observables is smaller than the precision with which we
slightly smaller(about 0.48%than what is predicted by the Observe these quantities. -
theory. Figure 4 has the velocity profile, in the case ofN

On the other hand, Henderson’s equation of sfa@ is =28 224 particles. The velocity at the center of the channel
extremely well satisfied. For this reason the theoretical preiS Slightly overestimated by the first-order correction but at
diction of the temperature via the equation of state of arfhird order there is a better agreement.
ideal gasT=p/n underestimates the observed temperature
by about 2%, as can be appreciated in Fig. 2. The discrep- 3. The heat currents g and g,

ancy in the central region is of about 1.7%. Figure 5 refers to the heat flugg,qy). The solid and

open circles represent the observed valueg,ofand g,
2. Shear and velocity fields respectively.
Figure 3 compares the differencAsy= yeo— vsim. be- dy: the horizontal dotted line is the first order prediction
tween the theoretical predictiorifirst and third orderand  given in Eq.(16); the solid line givesj, up to fifth order. We
the simulational values for the profile. It can be seen that do not showa, up to third order because it almost coincides

the third-order correction values give a better description ofvith the fifth-order profile. The first order gives a uniform
negative value that describes well the profile in the central

0.010 , , , , , part. To take into account the observations nearer to the
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FIG. 3. The plot shows the differendey= yieo— vsim. DEIWEEN B Y S R

the predicted and the observed values of the shear rate profile for

the N=7056 system. The ope(solid) circles show the difference FIG. 5. The heat fluxdy,q,), scaled with the factof,yT,/m,
considering yyeo €valuated up to firstthird) order. Up to third  for the N=7056 system. The solid and open circles represent the
order these differences, away from the walls, are of about 2%. observed values af, andq,, respectively. See text.
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walls at least third-order corrections must be considered.

gy : the dotted and solid lines give the second- and fourth-
order predictions, respectively. For the considered values of
F and Kn the lowestsecond order is enough to reproduce

the observed values af, (modified Fourier's law [12];

higher orders are quite negligible. The agreement with the

predicted values is excellent.

IV. THREE-DIMENSIONAL GAS-DYNAMIC EQUATIONS

GENERALIZED HYDRODYNAMICS FOR A POISEUILLE ...

551
75Kn VT*P%,dT*  9Kn {T* d Teps
_ 3 o dg - 3 o* d_f(y xz)
3 15KIPF PEAT*
_ * *
- 5 ‘yqx + qZ 16 p* 1 (25)
5Kn T* dg?
T PX,y- (26)

1_6 p* d§

Even though the present paper is centered in @ tWO- Thg gther diagonal components®} and the hydrostatic

dimensional system, many readers may be interested in t

essure are

corresponding three-dimensional version of the same results.

Hence, in this section we give the gas-dynamic equations for
a Poiseuille planar stationary flow of hard spheres of mass

and diametewr between two walls parallel to the€-Y plane

atz=—L,2 andz=L,/2, respectively. The transversal coor-

dinate isz and the system is subjected @r[g,0,0]. The
walls are kept at a fixed temperaturg. It is easy to see that
q,=0 andP,,=P,,=0. The adimensional shear rajeis

defined as
51 mTduy
Y162 N 7 dz°

The number densityn(z) is only a function ofz and
In(z)dz=N,,, whereN,, is the number of particles per unit
surface.

To dimensionalize we use a coordinagesuch thatz
= ¢L, and introduce the adimensional numbers

(20

Xy

B 1 _mgLZ 1
\/2770'2ny’ To Kn’

Further we useo=ToN,, /L, andqo=povTo/(2m) to de-

fine adimensional field3*, P}, andgy as in the bidimen-

Kn

(21)

* _ p* 14 * * _ D% 4 *
l:)xx_ Pzz_ g 7szv F>yy_ Pzz_ g ‘yPXZ’

6

p* = P;z_ g yP:Z' (27)

The boundary conditions afEé* (+3)=1. The fieldsT*,
P3,, andq; are even inF while P,, v, andqgy are odd. The
integral condition stemming from the equation of state is
again Y2 (p*/T*)d¢=1.

The second-order solution to the above system of equa-
tions is

14¢2 7 1133 1284
* = 2 |Kn?+ | —/—— 2
T 1+( 25 50} n+[1125 11257
y=—KnZF¢,
SR ) 29Kr? F?, PL=KnF¢ (28
= \5e2s” 150 |7 PrTKNTE (29
. 18KPF 16KnF?gd
qX__ 16 1 qz_ 15 .

The temperature at this order has a minimum at the center

sional case. The gas-dynamic equations are five differentid@f the channel but it has symmetric maxima quite near the

equations for the nontrivial field§*, y, P,, q; , qx . The
uniform field P}, is obtained from the integral condition
given below. The differential equations are

P:Z 2 *
Kn dz Kn fp_l_—* (22
Kn JT* do
? \/*_ qu = VP;Z_ P:v (23
p 3
105Kn P\ T* dT* 21  15KieF
21KF T Pky
+ 8 p*
15KrPF T* P}
_ Y4 (24)

16 p* ’

center, até~ *+1.57Kn. After we made this observation we
saw that a similar conclusion is made][itb,16.

In the following section we discuss some of the implica-
tions of these results.

V. DISCUSSION AND CONCLUSIONS

It has been shown that Boltzmann's equation implies a
gas-dynamics that has a more complex nature than standard
hydrodynamics. We stress again that no constitutive trans-
port equations were assumed, but rather the theoretical
framework itself gave us highly nonlinear equations that take
the place of the usual Newton’s and Fourier’s transport laws.

Since we have dealt with a laminar stationary flow, it was
possible to derive analytic perturbative expressions for every
hydrodynamic field and compare them with what was mea-
sured in our simulations. The effects beyond standard hydro-
dynamics should be observable, and are correctly described
with our expressions, within a small error margin, and they
have obvious relevance in straightforward molecular dynam-
ics.

Most of our work refers to the two-dimensional case since
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this is the system that we are able to simulate. In fact, in spit@listic value of the diameter for the particles
of the efficiency of our simulatd21] and the quality of our —1g-10 (m). RequiringL,=1 (m) the number densitp
computational equipment, we are not yet able to run thqyms out to be abouty/40, wheren, is the density obtained
simulations as long as needed with a system of an equivalegfyiding the Avogadro number by 22.4 liters. If we further
size in three dimensiofof at least 83=592 704 particles use the valueF=2.0, then near the wallg], /q,~0.2
. . . . g} X z =
One can, however, discuss the implications of the res““ﬁamely, the longitudinal heat flux component is 20% the

in three dimensions, given in Sec. IV, and argue that under
. L ’ value of the normal transversal component. For these values
appropriate conditions these effects qdopefully) be ob- b

served in real experiments. It is easy to derive that the rati
between the velocity at the center of the channgl,and the
thermal velocityv,=2v2To/(7M) iS v max/vin= V7 F/10.
Requiring that this ratio is less than 1.0 implies tt&t
<5.64. On the other hand, the Reynolds number defined as
Re=v mhal /v, Wherew is the ideal gas kinetic shear viscos-
ity, turns out to be Re 167/(25Kn) and the ratio between  This work has been partially financed by Fondecyt Grant
the abnormal heat flug, and the transversghorma) com-  No. 197 0786, by FundaaioAndes Grant No. C-12971, and
ponentq, is 0,/q,=9/(2Re), telling us that to make the by UBB Diprode research Grant No. 970905-2. We thank L.
effects ofg, more evident we need a Reynolds number notLetamendia for his hospitality at U. Bordeaux | and W. EI-
too large. lison for his help in the use of the Cray belonging to the

To make a numerical estimate of what has been said, ldtaboratorie Physique des Interactions Ondes-Metie
us take Kn= 1/(y2mno?L,)=0.06, see Eq(21), as the one ENSCPB, U. de Bordeaux |. This work was also supported
used in our bidimensional simulations but considering a reby a ECOS-Conicyt grant.

of the parameters one can also check that the second-order
Qorrections to the hydrodynamic fields are quite appreciable,
particularly those on the temperature andRy;.

ACKNOWLEDGMENTS

APPENDIX: SOLUTION UP TO SIXTH ORDER IN ¥ IN DIMENSION TWO

We have solved self-consistently the differential equations up to sixth ordgmisingMAPLE. It is possible to go further
up, but this order seems more than enough for our present purposes.
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