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Generalized hydrodynamics for a Poiseuille flow: Theory and simulations
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From the complete Boltzmann’s equation we obtain general hydrodynamic equations for the laminar sta-
tionary Poiseuille flow driven by an acceleration of gravityg. This theoretical framework implies highly
nonlinear transport equations. The hydrodynamic equations are perturbatively solved up to sixth order using a
small adimensional parameterF proportional tog. The predictions are compared with our own simulational
results obtaining very good agreement. A second and small adimensional parameter that naturally enters the
formalism is a Knudsen number Kn proportional to the ratio between the mean free path and the width of the
Poiseuille channel and it serves to understand the role of the finite size effects. It will be seen in particular that
there is a heat flux with a normal componentqy and a heat fluxqx parallel to the isotherms and that their ratio
is inversely proportional to the Reynolds number:qx /qy;F/Kn;1/Re.@S1063-651X~98!08707-8#

PACS number~s!: 05.20.Dd, 47.50.1d, 51.10.1y
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I. INTRODUCTION

This paper presents a Poiseuille flow that shows a beh
ior beyond the scope of standard hydrodynamics. T
Poiseuille flow is a classical example to study by means
the Navier-Stokes equations@1–3#. Perhaps the firs
molecular-dynamic simulation of this flow is the one r
ported in@4#. Usually the Poiseuille flow is understood to b
driven by an externally imposed pressure gradient, but
trivially equivalent to applying a gravitational force mg ov
each particle@5,6#. For small velocities~small Reynolds or
Mach number! the flow is known to be laminar and station
ary and the velocity profile is parabolic. There is, howeve
critical Reynolds number above which an unstable~turbu-
lent! regime starts@2#. In @7# the authors studied a sma
system of Lennard-Jones particles observing that in spit
the size of the system it has a good hydrodynamic behav

In this paper we present analytic and simulational res
regarding the Poiseuille flow of a two-dimensional system
hard particles in a regime deeply inside the stable zone.
corresponding theoretical results in the 3D case are prese
in the final section. An interesting feature of our system
hard particles is that it presents important thermal and c
pressibility effects. Hence this numerical system represen
challenge to the theory of hydrodynamics since its transp
coefficients depend on position. A relatively recent and qu
thorough numerical analysis of the 2D Poiseuille flow
found in @8#.

It will be shown that our simulational observations fa
beyond standard hydrodynamics: the transport laws are
linear and effects related to the small ratio of the mean f
path and the width of the channel are observable. We pre
a hydrodynamics derived directly from Boltzmann’s equ
tion, which includes, besides the balance of mass, mom

*Electronic address: drisso@enskog.dfi.uchile.cl
†Electronic address: pcordero@cec.uchile.cl
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tum, and energy, extra balance equations that take the p
of the usual constitutive equations. These extra equations
derived from Boltzmann’s equation using a moment exp
sion of the distribution. The whole picture is valid in th
Boltzmann-Grad limit of low density and small, but finite
mean free path. We call such dynamicsBoltzmann-Grad
gas-dynamicssince Grad pioneered moment expansions
the present context@9#. Besides Grad’s already cited article
we have made presentations and applications of Boltzma
Grad gas-dynamics in@10–12#. It has to be underlined that in
the present framework no constitutive transport equations
assumed. Instead, the derived gas-dynamics contains e
tions and they replace Newton’s and Fourier’s laws.

In @2# it has been shown that for a two-dimensional i
compressible Poiseuille flow in an infinitely long channel t
predicted critical Reynolds number is Rec55772 corre-
sponding to long wave excitations@6#. But when the aspec
ratio l5width/length is finite, the value of Rec increases
since these long wave excitations cannot exist. In@6# the
authors have studied the stability curvel versus Rec that
stems from a linear stability analysis. In particular from th
results it is seen that for aspect ratiol51 or l54—which
we use—Rec>106. In view of this we can state that th
numerical experiments that we present in the present p
are deeply in the stable region (Re,100).

One could say that the results in this work should
expected because we know that Boltzmann’s equation ha
describe correctly a system such as the one we deal with.
point is, however, that it is not obvious how to extract t
information from Boltzmann’s equation. Many application
of Boltzmann’s equations use the Chapman-Enskog met
to extract the information concealed in this very compl
kinetic equation@13# or, if not, they use the approximat
Bhatnagar-Gross-Krook~BKG! equation; in the context o
the Poiseuille flow see@5,14–16#. Up to second order the
Chapman-Enskog method is quite involved and leads to
ear constitutive equations, therefore it cannot describe w
we do here.
546 © 1998 The American Physical Society
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As already said, we use Grad’s moment expans
method@9#, which has already been proved to produce qu
nontrivial nonlinear constitutive equations that describe
traordinarily well the observations obtained from molecul
dynamic simulations@10–12#. We particularly underline tha
in @10# we were able to find a close analytic solution of t
gas-dynamic equations for the case of a planar Couette fl
and they describe extremely well the simulational obser
tions. Interesting fits to some of the results given in@10#
using a modified Boltzmann equation are given in@17#.

In Sec. II we present the gas-dynamic equations for
bidimensional laminar Poiseuille flow, the boundary and
tegral conditions, and a low-order nontrivial perturbative s
lution. In Sec. III after explaining the molecular-dynam
simulations that were made, a comparison between
theory of Sec. II and the simulational results is made. Sec
IV presents the gas-dynamic equations and a low-order
lution of the 3D case. The Appendix contains the pertur
tive solution up to sixth order for the bidimensional case

II. POISEUILLE LAMINAR FLOW GAS-DYNAMICS

In this section we present the hydrodynamic equations
a laminar 2D Poiseuille flow along a channel with wa
parallel to theX axis placed aty56Ly/2. The fluid moves
under the effect of a gravitational accelerationgW 5gx̂, it has
Nx particles per unit length along the channel and the w
are kept at a fixed temperatureT0.

A. Gas-dynamic equations

From Boltzmann’s equation it is straightforward to deri
balance equations for mass, momentum, and energy.
balance equations stemming from higher moments of the
tribution function are not so simple to derive since they
not associated to microscopically conserved quantities. T
are obtained using some truncation assumptions, as Grad
In this way balance equations associated to the pressure
sor, Pi j , and the heat flux vector,qk , follow and they are
dynamical equationsthat totally replace the usually linea
and static constitutive transport equations. We have rec
structed Grad’s derivation of these higher balance equat
for the case of a dilute 2D gas of hard disks and they
found in @10,11#. Once the whole set of balance equations
specialized to the Poiseuille flow, the problem is reduced
set of five coupled nonlinear differential equations, some
gebraic equations, a boundary condition, some symm
properties, and an integral condition. We remark that Gra
solution cannot be expected to be valid near the bounda
where the interaction with the walls plays an important d
torting role particularly at low densities because the form
ism does not take into consideration wall effects.

Before we write down the basic hydrodynamic equatio
for the laminar Poiseuille flow, we define adimensional fie
that, instead of being functions of the transversal coordin
y, are defined as functions ofj[y/Ly ,

T* ~j!5
T~y!

T0
,

Pi j* ~j!5
Pi j ~y!

p0
, ~1!
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qk* ~j!5
qk~y!

q0
,

where

p0[
NxT0

Ly
and q0[

1

2
p0AT0

m
5

2rAT0
3/2

pAms2
. ~2!

The temperature fieldT is expressed in energy units suc
that Boltzmann’s constant iskB51. The particles have mas
m and diameters; rA5(ps2/4)(Nx /Ly) is the global area
density andNx is the number of particles per unit length. It
convenient to define an adimensional fieldg that measures
the intensity of the shear rate

g5
1

2sp
AmT

p

dvx

dy
, ~3!

wherep is the hydrostatic local pressure.
When the equations are written in terms of these qua

ties some parameters emerge naturally. They are

Kn5
2

ApsNx

}
l

Ly
and F5

mgLy

T0

1

Kn
. ~4!

The parameterF serves to control the intensity of the velo
ity field. Kn is proportional to the ratio between the me
free pathl 5ps/(8A2rA) and the transversal linear size o
the box, hence it is a Knudsen number and it serves a
good descriptor of finite size effects. The complete picture
worked out under the assumption that Kn is small, otherw
we would be dealing with a Knudsen gas.

The mass balance equation is satisfied identically. T
rest of the balance equations are the following. The mom
tum balance yields

Pyy* 5const, ~5!

Kn
dPxy*

dj
5FKn2

p*

T*
. ~6!

The energy balance becomes

Kn

8

AT*

p*

dqy*

dj
52gPxy* . ~7!

The equations associated to the balance of thePi j give

p* 5Pyy* 2
3

2
gPxy* , ~8!

Kn

16

AT*

p*

dqx*

dj
52gPyy* 2Pxy* . ~9!

And finally theqk balance equations are

23
KnAT*

p*
Pxy*

dT*

dj
5qx* 13gqy* 1

FKn2

p*
AT* Pyy* ,

~10!
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KnAT*

p*
S 2Pyy*

dT*

dj
2

3

2

d

dj
$gPxy* T* % D

5qy* 1gqx* 1
FKn2AT*

p*
Pxy* . ~11!

Equations~6!, ~7!, ~9!, ~10!, and~11! are five coupled differ-
ential equations for the five fieldsPxy* , qy* , qx* , T* , andg.
To completely solve the hydrodynamic problem it is nec
sary to find also the uniform fieldPyy* . The hydrostatic pres
sure is determined from Eq.~8! andPxx* 52p* 2Pyy* .

In these equations the derivatives appear multiplied by
suggesting that it would be more natural to use as adim
sional transversal coordinate the quantityz[j/Kn, but then
the integral condition described below introduces Kn se
rately since Eq.~14! would be*p* /T* dz51/Kn.

Equations~9! and ~11! are rather complex equations th
take the place of the usual laws of viscous flow and of tra
versal heat transport, respectively. In our case they have
derived rather than introduced as assumptions.

B. Boundary and integral conditions

The temperature is fixed at the walls so that

T* S 6
1

2D51. ~12!

From the differential equations and the boundary con
tion ~12! it follows that the hydrodynamic fields of th
present problem have two parities, one with respect
changing the sign ofF and the other one with respect
inverting j. These parities are given in expression~13!,

F→2F j→2j

g 2 2

T* 1 1

qx* 2 1

qy* 1 2

Pxy* 2 2

Pyy* 1 1

~13!

The explicit use of these parities plus the boundary condi
mentioned above is enough to determine a unique solutio
the differential equations except thatPyy* is not yet deter-
mined.

To obtainPyy* it is necessary to use the ideal gas equat
of state derived in the Boltzmann-Grad limit:p5nT, where
n(y) is the number density. Since*n(y)dy integrated over
the width of the channel gives the density per unit leng
Nx , then

E
21/2

1/2 p* ~j!

T* ~j!
dj51. ~14!

From Eq.~6! it is seen thatPxy* (j) has to satisfy
-

n
n-

-

-
en

i-
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n
of

n

,

Pxy* S 6
1

2D56
1

2
FKn, ~15!

sincePxy* (j) is antisymmetric inj, but this is not an inde-
pendent condition.

C. Perturbative solution

The acceleration of gravity is the agent that takes the s
tem out of equilibrium. It is natural then to takeg, or rather
F, as the small parameter to iteratively find a solution. A
suming analyticity atF50 the set of differential equation
and the boundary condition can easily be solved consiste
order by order.

At the trivial orderF50 all fields vanish exceptT* 51
andPyy* 51.

It is easy to check that the second order solution is

Pxy* 5jKnF, g52jKnF,

Pyy* 511F 1

60
2

Kn2

4 GF 2,

~16!

T* ~j!511F 1

48
2

j4

3
1S 3j2

4
2

3

16DKn2GF 2,

qx* 52FKn2, qy* 5
8

3
j3F 2Kn,

from where it follows that

p* 511F 1

60
1S 3

2
j22

1

4DKn2GF 2. ~17!

The pressure is not uniform but its nonuniformity is qu
small since it is proportional to Kn2F 2. The temperature
profile is not parabolic and its nonuniformity is dominated
a j4 term. At this order one can already see a quadra
correction to thej4 profile, which is there because the Knu
sen number Kn is finite. This correction corresponds to
one in Eq.~21! of @18#. See also@19# and @12#.

Newton’s law of viscous flow in the present adimension
formulation isPxy* 52p* g and up to second order it is sa
isfied but at higher orders it is known that this is not the ca
as seen, for example, in@12#. Fourier’s law in adimensiona
form is qy* 522Kn(dT* /dj), which is not quite true at the
present order. The small difference, to this order, is 3Kn3j.
One should perhaps be surprised that there is a heat fluqx
parallel to the isotherms; it is small but it is there. This no
standard flux~parallel to the isotherms! has already been
mentioned in the literature and derived from Boltzmann
equation, as, for example, in@10,12,14,15#.

Integrating the expression forg and using definition~3!,
yields the usual parabolic velocity profile

vx* [Am

T0
vx52FS 1

4
2j2D . ~18!

Hence the hydrodynamic velocity at the center of the chan
at low order, from Eq.~18!, is proportional toF,
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vcenter* 5
F
2

, ~19!

as it has already been mentioned.
In Appendix A we give the solution of our system up

sixth order inF while in the next section we show how we
our solution fits with our observations. It can be checked t
the fourth order is enough to explain the fits presented in
next section. In fact, the sixth-order corrections are ne
gible in the cases we have considered.

III. SIMULATIONAL CONDITIONS
AND SIMULATION-THEORY COMPARISON

A. Generalities

Our main simulations consider a system ofN57056 par-
ticles in a channel of lengthLx5372.22s and width Ly
51488.86s. We have also made simulations with a larg
system ofN528224 particles, in a channel withLx5Ly
51488.9s. This implies, in both cases, that the global ar
density isrA50.01. With this choice the nonideal corre
tions to the equation of state are less than 2%. The size o
system is large enough that the ratio between themean free
path, l 5ps/(8A2rA), and the widthLy of the channel is
about 0.019.

Units are chosen so that the mass of each particle im
51, their diameter iss51, and time units are such that th
externally imposed temperatureT0 expressed in energy unit
(kB51) is fixed to beT051. The collisions among particle
are perfectly elastic. The vertical walls~along theY direc-
tion! are treated as periodic boundaries, and the collisi
with the hard horizontal walls~along theX direction! are
such that they imposeT051.0 at the walls as well as a nu
velocity. In both cases (N528224 andN57056) the exter-
nal acceleration has been choseng50.124(T0 /mLy)
50.000 083, which corresponds toF'2.07.

For finite systems there is a wall temperature jump t
cannot be neglected, implying that the limitT(y→wall) does
not give exactly the value externally imposed. As it will b
seen below, the effective values forT0 are T051.10 in the
caseN528 224 andT051.58 forN57056, implying effec-
tive valuesF51.89 andF51.31, respectively. The value o
the Reynolds number in our simulations is Re'67 for N
57056 and Re'42 for N528 224.

In every simulation the system was relaxed for ab
three thermal diffusion times,tdiff , before local time aver-
ages of the main moments of the distribution (n,vW ,T,pi j ,qW )
were taken. The temporal averages were taken for as lon
30 tdiff in the case ofN57056, and 46.5tdiff in the case of
N528 224. In onetdiff each particle suffers about 500 pa
ticle collisions whenN57056 and about 1000 particle coll
sions whenN528 224.

To measure the hydrodynamic behavior of the system,
box is divided inMx3M y rectangular cells. Time average
of the first moments of the distribution are made in each c
For the system withN528 224 particles the choice wa
Mx5M y528, which corresponds to about 36 disks per c
while in the case withN57056 the choice wasMx521,
M y584, or about 4.0 disks per cell.
t
e
i-

r

a

he

s

t

t

as

e

ll.

l,

In the caseN57056, the statistics was improved makin
21 independent runs using equivalent macroscopic in
conditions, which differed only microscopically. The resu
discussed below correspond to the ensemble of these s
lations.

Taking advantage of the translation invariance in theX
direction, it was natural to take horizontal averages of
observed cell results getting in this way smooth vertical p
files for the observed hydrodynamic fields.

B. Theory versus simulations

Most quantities show boundary effects. The temperat
field shows isotherms parallel to the flow but—as predic
by Eqs. ~10! and ~11!—the heat flux is not orthogonal to
them. The heat flux parallel to the flow~and to the isotherms!
will be discussed further along and it can be seen in Fig. 5
a wide central part it points against the flow while nearer
the walls its sign changes as predicted.

The equation of state is well satisfied across the flu
including the regions near the walls. Observed discrepan
with the ideal gas equation were always below 2% and
Henderson’s equation of state@20# is used the discrepancie
are below 0.1%.

Pyy should be uniform, see Eq.~5!, and this is what we in
fact observe. From the horizontal average of the obser
Pyy , the value at eachy is obtained with errors of less tha
0.4%. An additional vertical average over the previous p
file produces a variance of about 1028%. In this sense it can
be stated thatPyy is independent ofy as our equations pre
dict.

As a consequence of finite size the temperature has a
continuity at the walls. We use this fact to considerT0 as a
parameterto be determined. With this aim we equate t
measuredPyy with the theoreticalPyy5p0Pyy* , written up to
sixth order, to obtain an effectiveT0. In this way we deter-
mine an effective value:T051.10 for theN57056 system,
and T051.58 for N528 224. The other theoretical profile
obtained using these values forT0 are then directly com-
pared with the simulational results finding that usually th
almost coincide. Details follow.

FIG. 1. Density and pressure profile for theN57056 system.
The circles give the simulational results~see text! and the solid
lines correspond to the theoretical predictions up to sixth order.
solid and open circles represent the pressure and density, re
tively.
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1. Thermodynamic fields

The pressure that we predict is in excellent agreem
with what we observe~solid circles in Fig. 1!, the discrepan-
cies being less than 0.5%. Only in a narrow region near
walls are there deviations that reach 6%.

The density profile~open circles in Fig. 1! shows impor-
tant boundary effects. Near the walls theory underestim
the density by about 7%. Since the global density is fix
this implies that the mean density in the central region
slightly smaller~about 0.48%! than what is predicted by th
theory.

On the other hand, Henderson’s equation of state@20# is
extremely well satisfied. For this reason the theoretical p
diction of the temperature via the equation of state of
ideal gasT5p/n underestimates the observed temperat
by about 2%, as can be appreciated in Fig. 2. The disc
ancy in the central region is of about 1.7%.

2. Shear and velocity fields

Figure 3 compares the differencesDg5g theo.2gsim. be-
tween the theoretical predictions~first and third order! and
the simulational values for theg profile. It can be seen tha
the third-order correction values give a better description

FIG. 2. Temperature profileT/T0 for the N57056 system. The
circles give the simulational results and the solid line correspond
the theoretical prediction up to sixth order. The discrepancy in
central region is of about 1.7%.

FIG. 3. The plot shows the differenceDg5g theo.2gsim. between
the predicted and the observed values of the shear rate profil
the N57056 system. The open~solid! circles show the difference
consideringg theo. evaluated up to first~third! order. Up to third
order these differences, away from the walls, are of about 2%.
nt

e

es
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e
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the observations~the discrepancy in this case being about 2
except very near the boundary region!.

Plotting the observed values ofPxy and 2pg produces
coincident points, namely, the deviations from Newton’s la
cannot be observed. The reason can be understood bec
Pxy and 2pg at first order coincide@they areO(KnF)#
while Pxy1pg is O(Kn3F 3). The difference between thes
two observables is smaller than the precision with which
observe these quantities.

Figure 4 has the velocity profilevx in the case ofN
528 224 particles. The velocity at the center of the chan
is slightly overestimated by the first-order correction but
third order there is a better agreement.

3. The heat currents qx and qy

Figure 5 refers to the heat flux (qx ,qy). The solid and
open circles represent the observed values ofqx and qy ,
respectively.

qx : the horizontal dotted line is the first order predictio
given in Eq.~16!; the solid line givesqx up to fifth order. We
do not showqx up to third order because it almost coincid
with the fifth-order profile. The first order gives a uniform
negative value that describes well the profile in the cen
part. To take into account the observations nearer to

to
e

for

FIG. 4. Thevx velocity profile, scaled with the factorAT0 /m,
for theN528 224 system. The circles give the simulational resu
the dotted line gives the first-order correction. The velocity pro
up to third and fifth order are indistinguishable and correspond
the solid line.

FIG. 5. The heat flux (qx ,qy), scaled with the factorT0AT0 /m,
for the N57056 system. The solid and open circles represent
observed values ofqx andqy , respectively. See text.
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PRE 58 551GENERALIZED HYDRODYNAMICS FOR A POISEUILLE . . .
walls at least third-order corrections must be considered
qy : the dotted and solid lines give the second- and fou

order predictions, respectively. For the considered value
F and Kn the lowest~second! order is enough to reproduc
the observed values ofqy ~modified Fourier’s law! @12#;
higher orders are quite negligible. The agreement with
predicted values is excellent.

IV. THREE-DIMENSIONAL GAS-DYNAMIC EQUATIONS

Even though the present paper is centered in a t
dimensional system, many readers may be interested in
corresponding three-dimensional version of the same res
Hence, in this section we give the gas-dynamic equations
a Poiseuille planar stationary flow of hard spheres of masm
and diameters between two walls parallel to theX-Y plane
at z52Lz/2 andz5Lz/2, respectively. The transversal coo
dinate isz and the system is subjected togW 5@g,0,0#. The
walls are kept at a fixed temperatureT0. It is easy to see tha
qy50 and Pxy5Pyz50. The adimensional shear rateg is
defined as

g5
5

16

1

s2p
AmT

p

dvx

dz
. ~20!

The number densityn(z) is only a function of z and
*n(z)dz5Nxy , whereNxy is the number of particles per un
surface.

To dimensionalize we use a coordinatej such thatz
5jLz and introduce the adimensional numbers

Kn5
1

A2ps2Nxy

, F5
mgLz

T0

1

Kn
. ~21!

Further we usep05T0Nxy /Lz andq05p0AT0 /(2m) to de-
fine adimensional fieldsT* , Pi j* , andqk* as in the bidimen-
sional case. The gas-dynamic equations are five differen
equations for the nontrivial fieldsT* , g, Pxz* , qz* , qx* . The
uniform field Pzz* is obtained from the integral conditio
given below. The differential equations are

Kn
dPxz*

dj
5Kn2F

p*

T*
, ~22!

Kn

8

AT*

p*

dqx*

dj
52gPzz* 2Pxz* , ~23!

2
105Kn

32

Pxz* AT*

p*

dT*

dj
5qx* 1

21

10
gqz* 1

15Kn2F
8

AT*

1
21Kn2F

8

AT* Pxz* g

p*

2
15Kn2F

16

AT* Pzz*

p*
, ~24!
-
of

e

-
he
ts.
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2
75Kn

32

AT* Pzz*

p*

dT*

dj
2

9Kn

8

AT*

p*

d

dj
~gT* Pxz* !

5
3

5
gqx* 1qz* 2

15Kn2F
16

Pxz* AT*

p*
, ~25!

5Kn

16

AT*

p*

dqz*

dj
52Pxz* g. ~26!

The other diagonal components ofPi j* and the hydrostatic
pressure are

Pxx* 5Pzz* 2
14

5
gPxz* , Pyy* 5Pzz* 2

4

5
gPxz* ,

p* 5Pzz* 2
6

5
gPxz* . ~27!

The boundary conditions areT* (6 1
2 )51. The fieldsT* ,

Pzz* , andqz* are even inF while Pxz* , g, andqx* are odd. The
integral condition stemming from the equation of state
again*21/2

1/2 (p* /T* )dj51.
The second-order solution to the above system of eq

tions is

T* 511S F14j2

25
2

7

50GKn21F1133

1125
2

128j4

1125G DF 2,

g52KnFj,

Pzz* 511S 5657

5625
2

29Kn2

150 DF 2, Pxz* 5KnFj, ~28!

qx* 52
15Kn2F

16
, qz* 5

16KnF 2j3

15
.

The temperature at this order has a minimum at the ce
of the channel but it has symmetric maxima quite near
center, atj'61.57Kn. After we made this observation w
saw that a similar conclusion is made in@15,16#.

In the following section we discuss some of the implic
tions of these results.

V. DISCUSSION AND CONCLUSIONS

It has been shown that Boltzmann’s equation implies
gas-dynamics that has a more complex nature than stan
hydrodynamics. We stress again that no constitutive tra
port equations were assumed, but rather the theore
framework itself gave us highly nonlinear equations that ta
the place of the usual Newton’s and Fourier’s transport la

Since we have dealt with a laminar stationary flow, it w
possible to derive analytic perturbative expressions for ev
hydrodynamic field and compare them with what was m
sured in our simulations. The effects beyond standard hyd
dynamics should be observable, and are correctly descr
with our expressions, within a small error margin, and th
have obvious relevance in straightforward molecular dyna
ics.

Most of our work refers to the two-dimensional case sin
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this is the system that we are able to simulate. In fact, in s
of the efficiency of our simulator@21# and the quality of our
computational equipment, we are not yet able to run
simulations as long as needed with a system of an equiva
size in three dimension~of at least 8435592 704 particles!.

One can, however, discuss the implications of the res
in three dimensions, given in Sec. IV, and argue that un
appropriate conditions these effects can~hopefully! be ob-
served in real experiments. It is easy to derive that the r
between the velocity at the center of the channelvmax and the
thermal velocityv th52A2T0 /(pm) is vmax/v th5ApF/10.
Requiring that this ratio is less than 1.0 implies thatF
,5.64. On the other hand, the Reynolds number define
Re5vmaxLz /n, wheren is the ideal gas kinetic shear visco
ity, turns out to be Re516F/(25Kn) and the ratio betwee
the abnormal heat fluxqx and the transversal~normal! com-
ponent qz is qx /qz59/(2Re), telling us that to make th
effects ofqx more evident we need a Reynolds number
too large.

To make a numerical estimate of what has been said
us take Kn51/(A2pns2Lz)50.06, see Eq.~21!, as the one
used in our bidimensional simulations but considering a
te

e
nt

ts
er

io

as

t

et

-

alistic value of the diameter for the particless
510210 (m). RequiringLz51 (m) the number densityn
turns out to be aboutn0/40, wheren0 is the density obtained
dividing the Avogadro number by 22.4 liters. If we furthe
use the valueF52.0, then near the wallsqx /qz'0.2,
namely, the longitudinal heat flux component is 20% t
value of the normal transversal component. For these va
of the parameters one can also check that the second-o
corrections to the hydrodynamic fields are quite apprecia
particularly those on the temperature and onPzz.
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APPENDIX: SOLUTION UP TO SIXTH ORDER IN F IN DIMENSION TWO

We have solved self-consistently the differential equations up to sixth order inF usingMAPLE. It is possible to go further
up, but this order seems more than enough for our present purposes.
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